Overview | Package | Class | Source | Class tree | Glossary | UnrealScript Documentation |
previous class next class | frames no frames |
00001 00002 00003 00004 00005 00006 00007 00008 00009 00010 00011 00012 00013 00014 00015 00016 00017 00018 00019 00020 00021 00022 00023 00024 00025 00026 00027 00028 00029 00030 00031 00032 00033 00034 00035 00036 00037 00038 00039 00040 00041 00042 00043 00044 00045 00046 00047 00048 00049 00050 00051 00052 00053 00054 00055 00056 00057 00058 00059 00060 00061 00062 00063 00064 00065 00066 00067 00068 00069 00070 00071 00072 00073 00074 00075 00076 00077 00078 00079 00080 00081 00082 00083 00084 00085 00086 00087 00088 00089 00090 00091 00092 00093 00094 00095 00096 00097 00098 00099 00100 00101 00102 00103 00104 00105 00106 00107 00108 00109 00110 00111 00112 00113 00114 00115 00116 00117 00118 00119 00120 00121 00122 00123 00124 00125 00126 00127 00128 00129 00130 00131 00132 00133 00134 00135 00136 00137 00138 00139 00140 00141 00142 00143 00144 00145 00146 00147 00148 00149 00150 00151 00152 00153 00154 00155 00156 00157 00158 00159 00160 00161 00162 00163 00164 00165 00166 00167 00168 00169 00170 00171 00172 00173 00174 00175 00176 00177 00178 00179 00180 00181 00182 00183 00184 00185 00186 00187 00188 00189 00190 00191 00192 00193 00194 00195 00196 00197 00198 00199 00200 00201 00202 00203 00204 00205 00206 00207 00208 00209 00210 00211 00212 00213 00214 00215 00216 00217 00218 00219 00220 00221 00222 00223 00224 00225 00226 00227 00228 00229 00230 00231 00232 00233 00234 00235 00236 00237 00238 00239 00240 00241 00242 00243 00244 00245 00246 00247 00248 00249 00250 00251 00252 00253 00254 00255 00256 00257 00258 00259 00260 00261 00262 00263 00264 00265 00266 00267 00268 00269 00270 00271 00272 00273 00274 00275 00276 00277 00278 00279 00280 00281 00282 00283 |
class AimArcWeapons extends AimFunctions; //===================================================================== // Constants const MAX_FLIGHT_TIME = 3.0f; // estimate maximum flight time of an arced projectile //===================================================================== // Functions //--------------------------------------------------------------------- // AI weapon function: get spot to aim for when firing this weapon static function Vector getAimLocation( Weapon weapon, Pawn target, optional float leadScale ) { local Vector projectileLocation; local Vector targetLocation; local Vector aimLocation; local float timeToHit; local float distance; local float actualDistance; local float angle; // firing angle local float heightDelta; local float angleInc; local float velX; // projectile velocity in x local float velY; // projectile velocity in y local float g; local float mantissa; local float sine2Angle; local int loopCtr; local float multiplicator; g = weapon.getPredictedProjectileGravity(); if ( g == 0 ) return class'AimProjectileWeapons'.static.getAimLocation( weapon, target ); if ( leadScale == 0 ) leadScale = static.getLeadScale( weapon ); // travel time is somewhat off because of the parabolic trajectory - fix? timeToHit = static.projectileTimeToTarget( weapon, target ); targetLocation = target.predictedLocation( leadScale * timeToHit ) - timetoHit * weapon.rookMotor.getPhysicalAttachment().Velocity * weapon.projectileInheritedVelFactor; projectileLocation = weapon.rookMotor.getProjectileSpawnLocation(); aimLocation = targetLocation; aimLocation.Z = projectileLocation.Z; distance = VSize2D( aimLocation - projectileLocation ); heightDelta = targetLocation.Z - projectileLocation.Z; multiplicator = 1; //log( "getAimLocation:" @ VSize( target.Location - targetLocation ) @ distance @ heightDelta ); // at what angle must I hold weapon to traverse "distance" (assuming target is at same height as weapon owner) sine2Angle = g * distance / weapon.projectileVelocity / weapon.projectileVelocity; if ( heightDelta < 0 ) { if ( g == 0 || weapon.projectileVelocity * sqrt( 2 * -heightDelta / g ) > distance ) { // if a horizontal shot would overshoot the target -> point at target and adjust up angle = atan( heightDelta, distance ); angleInc = PI/180*2; } else { // if target is lower than shooter -> reduce angle angleInc = -PI/180*2; // can I shoot far enough? if ( sine2Angle > 1 ) angle = PI/4 - angleInc; // this is as far as I can shoot else angle = asin( sine2Angle ) / 2.0f; } } else { angleInc = PI/180*2; // aim at the max of direct angle and angle need to traverse distance, then adjust up if ( sine2Angle > 1 ) angle = PI/4; // this is as far as I can shoot else { //log( "angle_dist:" @ asin( sineAngle ) * 180 / PI @ "angle_direct:" @ atan( heightDelta, distance ) * 180 / PI ); angle = FMax( asin( sine2Angle ) / 2.0f, atan( heightDelta, distance ) ); } } //log( "New shot!" @ target.name @ "delta:" @ heightDelta @ "sin(2angle):" @ sine2Angle @ "angle:" @ angle / PI * 180 @ g @ weapon.projectileVelocity ); // iterate over angles until distance travelled by grenade equals actual distance - // height sign tells you in which direction to iterate do { angle += angleInc; velX = weapon.projectileVelocity * cos(angle); velY = weapon.projectileVelocity * sin(angle); // actual distance smaller than distance to apex? If yes, use first solution of the quadratic. if ( distance < velX * velY / g ) multiplicator = -1; else multiplicator = 1; mantissa = FMax(0.0f, velY*velY - 2 * heightDelta * g); // would be < 0 if target too high actualDistance = ( velY + multiplicator*sqrt( mantissa )) * velX / g; //log( "mult:" @ multiplicator @ "dist:" @ distance @ "actualDist:" @ actualDistance @ "adjusting by" @ angleInc @ "to" @ angle ); } until ( ++loopCtr > 10 || angle >= 0.45*PI || static.bEndAngleAdjustment( distance, actualDistance, angleInc, multiplicator ) ) //log( "its:" @ loopCtr ); if ( angleInc > 0 && angle <= PI/4 ) angle -= angleInc; // always undershoot assert( angle != PI/2 ); aimLocation.Z += tan( angle ) * distance; return aimLocation; } //--------------------------------------------------------------------- // AI weapon function: return the approximate position of the projectile's impact // (if nothing is hit timeToHit and hitLocation are unchanged) // todo: think about whether it's ok for this function to ever return None (since all arced projectiles will eventualy hit *something*) static function Actor getThingHit( out Vector hitLocation, out float timeToHit, Weapon weapon, Vector projVelocity ) { local Actor thingHit; local Vector projInitialLocation; // projecile's starting location local Vector projStartPoint; // projectile's location as it moves along simulated linear segments local Vector projEndPoint; local Vector hitNormal; local float g; // gravity local float timeToApex; // time till max height is reached local float timeToDestination; // max travel time for projectile local float times[5]; // 5 times that define the linear approximation of the projectile parabola local float timeAdjust; // subtracted from time during nounce prediction local int maxIt; local int i; // your standard iterator variable local class<ArcProjectile> projClass; g = weapon.getPredictedProjectileGravity(); if ( g == 0 ) return class'AimProjectileWeapons'.static.getThingHit( hitLocation, timeToHit, weapon, projVelocity ); thingHit = None; projClass = class<ArcProjectile>(weapon.projectileClass); projInitialLocation = weapon.rookMotor.getProjectileSpawnLocation(); projStartPoint = projInitialLocation; //weapon.rookOwner.loaStartPoint = projInitialLocation; // debug timeToApex = FMax( projVelocity.Z / g, 0.25f ); // if apex time is very small - don't worry about hitting the apex exactly timeToDestination = FMax( Abs(5.0f*timeToApex), MAX_FLIGHT_TIME ); // longest time it will take for projectile to reach destination // break up parabola into 5 linear segments based on travel time if ( timeToApex > 0 ) // projectile is being aimed upwards { maxIt = 4; times[0] = 0.7f * timeToApex; times[1] = 1.0f * timeToApex; times[2] = 1.3f * timeToApex; times[3] = 2.0f * timeToApex; times[4] = timeToDestination; } else // projectile is being aimed downwards { maxIt = 3; times[0] = 0.25f; times[1] = 0.5f; times[2] = 1.0f; times[3] = timeToDestination; } // do raytraces along line segments for ( i = 0; i <= maxIt; i++ ) { projEndPoint = static.ballisticPosition( projInitialLocation, projVelocity, times[i] - timeAdjust, g ); thingHit = weapon.AIAimTrace( hitLocation, hitNormal, // out values projStartPoint, // start point projEndPoint ); // end point //log( i $ ":" @ projStartPoint @ "*" @ projEndPoint @ "*" @ times[i] ); if ( thingHit != None ) { timeToHit = getTimeToHit( projInitialLocation.Z, projVelocity.Z, g, hitLocation.Z, times[i] - timeAdjust >= timeToApex ); timeAdjust += timeToHit; // bounce prediction is quite inaccurate: so err on the side of caution and don't do it if hitLocation is within "hurtRadius" if ( VDistSquared( hitLocation, weapon.Location ) >= projClass.default.radiusDamageSize * projClass.default.radiusDamageSize && timeAdjust <= 0.9f * class<ArcProjectile>(weapon.projectileClass).default.FuseTimer ) { //log( "BOUNCE" @ thingHit.name @ timeToHit @ timeAdjust ); // velocity of projectile when it reaches hitLocation (XY remain unchanged) projVelocity.Z -= timeToHit * g; // fully elastic collision of projVelocity around normal projVelocity = class<ArcProjectile>(weapon.projectileClass).default.BounceVelocityModifier * mirrorVectorByNormal( projVelocity, hitNormal ); // recompute timeToApex timeToApex = projVelocity.Z / g; // new starting location projInitialLocation = hitLocation; projStartPoint = hitLocation; timeToHit = timeAdjust; } else { timeToHit = timeAdjust; break; } } else projStartPoint = projEndPoint; } // debug //if ( thingHit != None ) // weapon.rookOwner.loaEndPoint = hitLocation; //else // weapon.rookOwner.loaEndPoint = weapon.Location; //log( "getThingHit:" @ weapon.rookOwner.name @ thingHit @ timeToApex ); return thingHit; } //--------------------------------------------------------------------- // time for the projectile to reach the specified Z-value // secondSolution: private static final function float getTimeToHit( float initialZ, float velZ, float g, float z, bool secondSolution ) { local float mantissa; local float timeToApex; timeToApex = velZ / g; mantissa = 2/g*(initialZ - z) + timeToApex*timeToApex; // can Z be reached? if ( mantissa <= 0 ) return FMax( 0, timeToApex ); // no: return time at which max height is reached if ( secondSolution ) return FMax( 0, sqrt( mantissa ) + timeToApex ); else return FMax( 0, -sqrt( mantissa ) + timeToApex ); } //--------------------------------------------------------------------- // helper function for iterative computation of throw angle private static final function bool bEndAngleAdjustment( float distance, float actualDistance, float angleInc, float multiplicator ) { if ( angleInc < 0 || multiplicator < 0 ) return actualDistance < distance; // decreasing angle or angle >= 45 -> actualDistance will get iteratively smaller else return actualDistance > distance; // increasing angle -> actualDistance will iteratively increase } //--------------------------------------------------------------------- // helper function for ballistic movement private static final function Vector ballisticPosition( Vector location, Vector velocity, float t, float gravity ) { location.Z -= 0.5f * gravity * t * t; return location + t * velocity; } |
Overview | Package | Class | Source | Class tree | Glossary | UnrealScript Documentation |
previous class next class | frames no frames |